La evaluación automática de sonidos de auscultación cervical (AC) es una herramienta no invasiva para evaluación de la deglución. Sin embargo, los eventos deglutorios pueden verse enmascarados por fuentes de ruido. Este trabajo propone una metodología de caracterización y clasificación de señales de AC con alta resolución temporal a partir de estetoscopio, para discriminar entre sonidos deglutorios y asociados a ruido. Se adquirieron señales de AC en 10 sujetos sanos durante tres pruebas: toma de líquido, pronunciación del fonema /a/ y aclaramiento de garganta. Se extrajeron características de la señal de AC basadas en coeficientes cepstrales en la escala Mel, transformada wavelet discreta y entropía de Shannon. Las características con mayor relevancia fueron utilizadas como entrada a una máquina de vectores de soporte. Utilizando ventanas de 60 ms - alta resolución temporal - y validación cruzada, se obtuvieron exactitudes del 97.7% para detección de eventos acústicos y 91.7% para sonidos deglutorios. El método propuesto permite clasificación de sonidos deglutorios utilizando estetoscopio -dispositivo común en la práctica clínica- con exactitud comparable a otros trabajos que tienen menor resolución temporal o que utilizan otro tipo de sensores. Este trabajo constituye una primera etapa en el desarrollo de un algoritmo robusto para clasificación de sonidos deglutorios asociados a desórdenes de la deglución, a partir de auscultación cervical, para fines de diagnóstico automático.
Palabras clave: deglución; sonidos deglutorios; auscultación cervical; estetoscopio; análisis cepstral; algoritmo de clasificación